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1. Introduction

The structure and dynamical evolution of the spiral arms of galaxies are characterized by the
competing processes of gravity, shocks, magnetic fields, mass transport, and heating and cooling.
By studying the interplay between these forces, the time evolution and overall structure of spiral
arms can be characterized. Recent advances in magnetohydrodynamic simulation of the interstellar
medium enable more realistic study of the influences from each relevant process, with the goal of

reconciling numerical results with observed properties of spiral arms.

In particular, the treatment of gas interaction in spiral shocks has been previously limited by
numerical algorithms and computational restraints. Also, while the overall theory of a multiphase
ISM has existed since the early two phase model of Field, Goldsmith, & Habing (1969) and since
evolved into a three phase model (Cox & Smith 1974; McKee & Ostriker 1977; Spitzer 1978), there
still exists a lack of detailed understanding regarding the intricate interactions between the phases.
This has led to discrepancies in observed spiral arm profiles and calculated ones.

Development of gaseous spiral arm modeling extends back to the first one dimensional steady
state models which studied gas flow subject to spiral gravitational field forcing (Roberts 1969;
Shu et al. 1973). The Roberts model showed for the first time that shocks form. Roberts argued
that the increased surface density and reduction of shear caused by spiral shocks encourages gas
condensation and star formation in the peak and immediately trailing edges of the shock. The Shu
et al. (1973) models focused on linking the breadth of arms to the sound speed of the flowing gas,
and studied simple substructures due to resonances in the arms. These models, which adopted
an isothermal equation of state, produced the classical sharp discontinuity at the shock, with slow
postshock decline for the spiral density profile. However, these models lacked any treatment of the
gas as a multiphase component and lacked the time dependence of the spiral shock. Time evolution
was first studied by Woodward (1974), who showed how shocks form in a spiral potential through
convective steepening. However, this model was still for a single phase medium.
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Further refinements in modeling shocks in spiral arms came in the mid to late 80s with the
inclusion of a pseudo-cloudy medium (Balbus & Cowie 1985; Lubow, Balbus, & Cowie 1986; Balbus
1988a,b). These analyses used idealized approaches to treating a gas consisting of a collection of
discrete, interacting, cold cloudlets. Mathematically, the hydrodynamic equations were modified
to include an explicit, bulk viscosity. Their intent with this approach was to model a multiphase
medium with an effective diffusion associated with large mean free paths for cloud collisions. In these
models, the spiral arm profiles became smoother as the viscosity was increased. By studying the
growth of self-gravitating perturbations in the linear regime, they suggest that arm substructures
form due to transient gravitational instabilities. With self-gravity, an increase of the gas fraction
had the effect of smoothing out the shock profile and shifting its peak, while low gas fractions
produced a more saw-toothed shock profile.

The interaction of gas with spiral shocks has also been modeled with N-body simulations which
treats the gas as individual sticky particle clouds (Schwarz 1981; Combes & Gerin 1985). This
treatment of the ISM would seem to capture some properties of a realistic gas distribution when
most of the material is in small cold clouds. The actual implementation requires parameterizing
the clouds with ad hoc equations for energy exchange and collisions. This method has thus far
been unable to resolve sharp features such as sudden velocity jumps and strong density gradients.

Recently, gas in spiral shocks has been modeled using hydrodynamical codes, which are able to
model the time dependent evolution of the gas by solving standard fluid equations. These methods
are able to faithfully reproduce observed gas kinematics of spirals (Regan, Vogel, & Teuben 1997;
Regan, Sheth, & Vogel 1999). While a wide range of work has been done using this method, most
significant to this study is the work of Kim & Ostriker (2002), hereafter KO02. They modeled
the gas in a rigidly rotating spiral potential as differentially rotating, razor thin disks with self-
gravity and magnetic fields. These nonlinear two dimensional simulations produced the spur-like
structures seen in many spiral galaxies. However, the gas was treated as an isothermal fluid. Other
approaches include treatment of the gas via smoothed particle hydrodynamics (Gittins, Clarke, &
Bate 2003; Gittins & Clarke 2004), where interacting gas cloudlets are observed to collide, merge,
and gravitationally collapse in a spiral potential.

At this juncture, we still lack simulations of a realistic cloudy medium interacting with a
spiral gravitational potential. What effect would a non-isothermal treatment of the gas have on the
overall structure of spiral shocks? In particular, are more realistic simulations able to reproduce the
observed average profiles of the gas in spiral galaxies? These observed profiles are more symmetric
than those produced by isothermal models (Shetty et al. 2005), as shown in Figure 4. Is the average
profile smoother when cloudy structure is incorporated, as is possible in simulations that include a
realistic HI cooling function?

With these questions in mind, this work seeks to improve upon previous studies by adding a
more realistic treatment of gas cooling and heating mechanisms. We simulate via MHD the time
evolution of a differentially rotating cloudy medium in a rigidly rotating spiral potential. The gas
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is treated as a razor thin disk in the plane of the arm. Instead of using isothermal cooling, we
include a simplified cooling function which closely follows that of a realistic two-phase ISM. Both

one and two dimensional cases are considered.

The remainder of the paper will proceed as follows. In Section 2.1, we outline the MHD
equations used for the simulations. We then discuss the cooling function and its implementation
is Section 2.2, followed by a summary of the numerical method used and its validation in Sections
2.3 and 2.4. Section 3 contains detailed descriptions of the parameters studied in this paper, and
then details the variety of simulations performed and analyzed. Finally, Section 4 summarizes our

chief conclusions.

2. Methods
2.1. Model Equations

We study a magnetized, differentially rotating, razor thin gaseous disk in an externally imposed
spiral potential, with optically thin heating and cooling. Following KO02, the spiral potential arises
from the stellar component of a spiral arm, which is assumed to be tightly wound and rigidly rotating
with a constant pattern speed €2, relative to the inertial frame. The radial velocities resultant from
the noncircular motion of the spiral forcing cause nonlinearly compressed spiral arms.

A Cartesian frame is constructed based on the work of Roberts (1969). In this model, the
center of the local frame is at Rp and it rotates at the pattern speed 1, about this center. The
two coordinates with respect to this moving frame are then the radial displacement (R — Rp) and
the angular displacement (Ro(6 — Qpt)). A local rectangular box is recovered by tilting the entire
frame at an angle ¢ such that the x and y directions correspond to the direction perpendicular and
parallel to the spiral arm, respectively. The dimensions of the box are L, and L,.

The time-dependent equations of MHD are expanded into this rotating frame with the following
approximations from KOO02. Spiral arms are assumed to be tightly wound, such that the pitch angle
i = arctan(Ar/Ag) < 1. A local model insists that L., L, < Ry, and the arm induced velocities are
much smaller than QRy. Volumetric heating and cooling terms, and a thermal conduction term,
are then included in the MHD equations to yield the following (in standard notation):
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for a flat rotation curve.

2.2. Cooling

The net cooling per mass is given by

L= pA(p,T) ~T (6)

We implemented a simplified cooling function based on detailed cooling parameter tables pro-
vided by Mark Wolfire (Wolfire et al. 1995, 2003). These tables give the value of net heating and
cooling due to the principle ISM processes, including: photoelectric heating from small grains and
PAHs, X-ray heating, cosmic ray heating, CI photoionization heating, fine structure cooling of C
II, OI, and CI, Lyman alpha transition cooling, and cooling due to recombination onto grains. The
parameter space is 5.0 K < T < 2x10* K by 1072 ¢m™% < n < 10° ¢m™%. The values are defined
for solar metallicity and a shielding column of N = 10"em ™2, which corresponds to a warm neutral
medium cloud of about 1 M. This is the expected WNM cloud size in a three phase ISM (McKee
& Ostriker 1977). All calculations of £ are made using a calculation for the X-ray/Extreme UV
flux with the same average column density as above (Wolfire et al. 1995, 2003).

Figure 2 shows the contours of £ as a function of the thermal pressure P/k and hydrogen
density n. The equilibrium curve is denoted by the 0 curve. Gas in the region above the curve has
net cooling (£ > 0) and gas below the curve has net heating (£ < 0). Cold or warm phase gas
will respond to perturbations in temperature by either cooling or heating back to the equilibrium
curve. As originally detailed in Field, Goldsmith, & Habing (1969), the local shape of the cooling
curves determines the stability of the perturbed media, thus characterizing the process of thermal
instability. For isobaric cooling, gas is thermally stable where d(logP)/d(logn) > 0 and thermally
unstable where d(logP)/d(logn) < 0 on the equilibrium curve. Perturbed gas in the thermally
unstable region will either continue to heat or cool in the same direction as the temperature gradient
of its original perturbation until it reaches one of the other two equilibrium points.

A simple cooling function fit to the Wolfire et al. (1995) cooling tables is described in Sdnchez-
Salcedo et al. (2002). We follow Piontek & Ostriker (2004), hereafter PO04, in implementing this
function as a close approximation to the cooling of a cloudy medium. The function consists of a
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piecewise exponential function a defined as follows:
A = Ciipa TP for T; < T < Tipy (7)

where the values of 8 are B12 = 2.13, f23 = 1.0, 834 = 0.56 and B45 = 3.67 and the corresponding
critical T values are T} = 10 K, Ty = 141 K, T3 = 313 K, T, = 6102 K and T5 = 10° K. C is given
in ergs s7! g72 KPiit1 by O = 3.42 x 1016,C23 = 9,10 x 10*¥,C3 4 = 1.11 x 10%° ;and Cy5 =

2.00 x 10® assuming constant heating, I'. This assumption is made based on the weak density

92) of the heating term when the dominant heating term is due to photoelectric

heating from small grains and PAHs. Thus I' = 0.015 ergs s~ g1

dependence (p

Figure 3 displays contours of the simplified cooling function at the same levels as were shown
in Figure 2 for the full cooling tables. The fit appears to match well although the detailed cooling
function seems to be shifted upwards by a small factor.

2.3. Code and Numerical Methods

The time dependent evolution of the MHD equations is integrated with a version of the ZEUS-
2D code (Stone & Norman 1992a,b). ZEUS implements a time-explicit, operator-split, finite dif-
ferencing method for solving MHD on a staggered mesh. On this mesh, velocities and magnetic
fields are face-centered, while energy and mass density are volume-centered quantities. Accurate
propagation of Alfvén waves is ensured by the method of characteristics, while V - B is maintained
within machine accuracy by constrained transport (Evans & Hawley 1988; Hawley & Stone 1995).

For this study, a hybrid version of the ZEUS code has been created from the previous works of
Kim & Ostriker (2002) and Piontek & Ostriker (2004). Following the former, the simulations are two
dimensional in the x-y plane. Our box has shearing box boundary conditions, where x boundaries
are shearing periodic while y-boundaries are purely periodic. The velocity decomposition method
of Kim & Ostriker (2001) is employed to minimize diffusion from advection due to the background
shear.

As in POO04, cooling is solved implicitly using the Newton-Raphson method. This method is
chosen since cooling times can be much shorter than dynamical times, making detailed time step
control necessary. The timestep is reduced by a factor of two if any zone on the grid changes in
temperature by more than a factor of 10%. In order to have realistic amplitudes for external spiral
potential before cooling is initialized, we first run with an isothermal equation of state for three
orbits, with a gradual initialization of the external potential to its full value by the second orbit.
The variability of the isothermal case over three orbits will be discussed in section 3.2. Only after
the arm density profile is steady do we turn on the cooling with an ideal gas law parameterized by
v = 5/3, where +y is the heat capacity ratio c,/c, for monoatomic gases.
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2.4. Code Tests

The ZEUS code itself is a well established and has been thoroughly tested in a wide variety of
astronomical problems. The implementation of the external potential and the cooling functions has
also been established and tested, and those results can be found in KO02 and PO04 respectively.

The hybrid code was tested on a variety of simple cases for validation. The code can produce
long lived isothermal spiral shocks with little variation in amplitude. A secondary density pertur-
bation forms occasionally due to the superharmonic resonance of the arm; this is a result of not
having self gravity within the simulations (see KO02). We do not include self gravity here, how-
ever, as it would lead to large-scale, gravitationally bound clouds rather than a system of smaller
cloudlets more characteristic of the atomic ISM. The hybrid code is also able to reproduce the
thermal instability results of PO04.

2.5. Visualization

In addition to modifications in ZEUS, a large package of IDL routines was created to facilitate
improved visualization and analysis of the ZEUS data. The final products can plot static images
from HDF dumps or produce movies of the data with a great deal of versatility. Static plots image
density, energy, temperature, velocities, and/or magnetic fields with the option of vector field or
contour overlays. Density profiles can also be plotted of both 1D and 2D simulations. Other original
routines can produce movies of any of the above parameters. All of these tools will be included in
any local distribution of the ZEUS code.

3. Simulations
3.1. Relevant Parameters

We present a variety of one and two dimensional simulations of gaseous spiral arm development
with a simplified cooling function. The two dimensional cases are at 256x256 resolution with
physical dimensions of 1 kpc in both = and y. The one dimensional cases are at a resolution
of 1280x2, with the x physical dimension of lkpc. These dimensions were chosen in order to
maintain a reasonable physical size for clouds close to the Spitzer standard size for HI clouds (1-
10pcs). Although a more reasonable physical scale for spiral arm periodicity is 3kpc, the increase
in resolution by a factor of three would be too computationally intensive for the available resources.
We suggest that the 1 kpc box size models will qualitatively represent the main effects that results,
independent of size.

The initial density and pressure are chosen to be representative of diffuse ISM. Thus the
density is n = 1 ¢m™3 with an initial P/k = 2000 K c¢m~3. Constant parameters include the



-7 -

heating term and K, the magnitude of the conduction term. Conduction is important in thermal
instability simulations in preventing unresolved growth of perturbations. Our K was chosen to be
2.575 x 108 ergs cm ™! for the 2d case and 1.609 x 107 ergs em ! for the 1D case, such that the
field length for thermal instability is resolved by 8 grid zones (Piontek & Ostriker 2004).

The overall timescale is six orbits. The first two orbits are isothermal and are characterized by
the gradual establishment of a background spiral gravitational potential defined by an amplitude

€, defined as:
2T @ext

° T X 2R, (®)

Amplitudes are chosen so that the contrast between background conditions and the spiral arm
lie between a factor of a few and ten. The parameter ¢ ranges between 0.02 and 0.05 for the 1D
cases and held constant at 0.035 for the 2D cases. The third orbit consists of the full established
spiral potential with purely isothermal gas; this orbit allows the potential to settle before being
shocked by cooling. Cooling is turned on after the third orbit and thermal instability is allowed to
progress freely.

A variety of magnetic fields strengths are applied to the 1D and 2D cases, characterized by an
amplitude S,

B = 28 = > (9)

where v, is the Alfvén speed. The range of values is 1 < < 100, where § = 1 — 10 are typical
values for interstellar magnetic fields. The corresponding mean magnetic field strength is then

3.2
B="Z
VA"

nH 1/2 CS
G( 1cm_3) (7.0km3_1) (10)

Table 1 contains a summary of the simulations that will be discussed for the remainder of this
section.

3.2. Isothermal Stability

As described in the Methods section, cooling turned on after three orbits. This is in order to
give the underlying spiral arm potential enough time to achieve a steady gas profile. Previously,
Kim & Ostriker (2002) found that a uniform initial density background with a gradually imposed
external spiral potential reached a steady state after 5 orbits. We conclude that for the simple
cases run for this paper, three orbits is adequate.

Figure 4 shows samples of the overall time evolution of the isothermal shock for the case of €
= 0.035. These profiles, as are all subsequent profiles unless explicitly stated, are boxcar smoothed
over 10 pcs. For the simulations studied here, this corresponds to 3 zones for the 256x256 resolution
simulations and 10 zones for the 1024x2 simulations.
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Examining Figure 4, typical flat-faced shock front produced by a spiral external potential in
an isothermal medium is immediately obvious. The secondary density perturbation that forms
periodically on the trailing end of the shock is caused by the ultraharmonic resonance (Shu et al.
1973). The amplitude and variability of the shock front settles near the third orbit.

This stability after three orbits is better seen in the next series of images, which shows a host
of 1D simulations at a range of ¢ (see Figs. 5, 6, 7, 9, and 10) and a 2D case at €=0.035 for
comparison (Fig. 8). The overlays are different snapshots of the average profile of the simulation at
times following the third orbit. Lower values of € converge less convincingly to a steady state, while
€=0.035 is the weakest potential to have a consistent profile over time. Thus €=0.035 is chosen as
the amplitude of the external potential to study the two dimensional evolution of a cooled spiral
shock. While we could have chosen a larger value, we want to minimize the density contrast between
the background and the spiral arm.

It is also significant that there is no obvious difference between the 2D and 1D isothermal cases
at €=0.035 (Figs. 7, 8). Most likely, the 2D potential would settle more quickly than the 1D given
its extra degree of freedom. Regardless, we shall maintain a 3 orbit turn-on time for the cooling so
that comparisons can be easily made between the low and high resolution cases.

3.3. 2D Time Evolution

The 2D density images for the four cases of no magnetic fields, =100, 5=10, and S=1 are
included for timesteps of two tenths of an orbit over the interesting three orbital period in which
cooling causes thermal instabilities to develop and structure to evolve. Contours of the magnetic
potential are plotted whenever the magnetic field is initialized.

The simple hydro case has the typical £=0.035 (see Fig 11). As cooling is turned on, thermal
instabilities rapidly form dense clouds. These clouds are shed off the central shock in the form
of large parallel density perturbations, and flow downstream away from the arm. They are not
all shed at exactly the same time intervals. These dense filaments maintain their continuity until
almost a full orbit later, when the boundary periodicity brings them into contact with the arm. The
filaments fragment and blend into the arm in this collision. As a result, the next set of filaments
to leave the bar do not have the same perfectly parallel symmetry to the arm as the first set did.
The arm is still fairly clear after the three orbits have ended, and the gas is distributed in the arm
and in long density conglomerations which seem to start perpendicular to the central potential but
are sheared out.

The low magnetic field case of =100 (Fig 12) shows much the same initial response to the
cooling function as did the previous case. Linear density filaments leave the central arm and
re-collide after about one orbit, where the arm develops some transient spur-like substructures.
However this structure soon gives way to large cloudlets interacting with the upstream arm front.
There are no obvious differences between the final state of the cloudlets in this slightly magnetized



case with those of the unmagnetized case.

As [ increases to 10 (Fig 13), the parallel filaments develop the tendency to fragment into small
over-dense regions aligned along the magnetic field lines. This is because the magnetic pressure
forces resist compression perpendicular to field lines, so the thermal instability can most easily
develop with velocities in the azimuthal (field-aligned) direction. On the trailing edge of the arm,
these small cloudlets are sheared out and form long spurs off the central spiral arm. These spurs
persist for a little over half an orbit before they fragment into small and large clouds for the
remaining orbits.

Finally, the strong field case with f=1 (Fig 14) shows clear suppression of the sharp density
filaments characteristic of the unmagnetized or weakly magnetized cases. Instead of parallel fronts
moving off the main shock and then fragmenting, the initial shock stays fairly steady and spurs
form as the cooled gas is sheared out of the magnetic field lines. As time progresses, long strands
of dense regions appear to form and finally break up into individual clouds. This case seems to
remain more ordered at the long time scale than the previous weakly magnetized simulations.

3.4. Shock Profiles

By holding € constant, we study the effects of the simplified cooling function and its interaction
with magnetic fields on the density profiles of spiral potentials. These profiles show the averaged g
(azimuthal) density over the box size of 1 kpc. The time evolution of the profile for 2D simulations
with no magnetic field, 5=100, =10, and S=1 is shown in Figures 15, 16, 17, and 18, respectively.
Two profiles are plotted in each; the dotted line is smoothing over 10pc, while the solid line is
smoothing over a typical observational resolution of 150pc (comparable to the resolution in Fig
4). The boxcar function used to smooth the profiles leaves discontinuous artifacts on the edges, so
these spikes should be ignored.

Overall, cooling appears to initially cause the central region of the arm to collapse to a highly
dense region, while density perturbations slough off and flow downstream. As time progresses,
these perturbations return through the periodic boundary to re-collide with the arm. It seems that
after this initial re-collision, the overall profile seems to settle. The arm maintains a large average
overdensity, but the inhomogeneous cloudy structure due to cooling smoothes out the leading edge
of the shock to create a more symmetric profile.

The magnetic field strength suppresses the initial growth of the perturbations resultant from
cooling. The unmagnetized case has the largest perturbations and central density peak, while
increasingly magnetized cases reduce the compression from cooling. The magnetic fields in the
B=1 model suppress the sharp perturbations entirely, resulting in a very smooth and broad profile.

Comparison to the high resolution cases yield very similar results. Figures 19, 20, 21, and 22
show a variety of time averaged profiles from the 1D simulations with the same initial conditions.
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The profiles must be time averaged over some part of the orbit to enable comparison with the 2D
profiles. The unmagnetized case very clearly has both the largest and the most density perturba-
tions as a result of cooling. The strongest magnetic field model, =1, looks essentially the same
as the isothermal case in 1D because the thermal instability is suppressed. The other magnetized
cases also seem to have sharper shock front faces than for the lower resolution 2D models.

3.5. Temperature Scales

Typical temperature scales for the warm and cold components of the atomic medium are
between 5000 and 8000 K for the warm neutral medium and around 60 K for the cold atomic
medium (McKee & Ostriker 1977). These temperatures correspond to the stable regions in the
equilibrium cooling curve. Figure 23 shows a time evolution of the gas temperature for a selected
simulation. All the models have the same general temperature scales, so only one case is shown as

an example.

The gas temperature begins in an isothermal distribution near 2020 K with small deviations
of £10. After cooling is turned on, there is a transitional period that lasts approximately one orbit
as the gas condenses and cools. After this orbit, the dense regions of the medium settle into cool
regions with characteristic minimum temperatures of 60 - 70 K. These cool clouds are interspersed
between diffuse, warm regions with maximum temperatures between 7000-9000 K. This is consistent
with the stable temperatures of the CNM and WNM.

3.6. Cloud Widths

Regardless of whether the model considered contains strong magnetic fields or no magnetic
fields at all, the late time morphology of the gas is dominated by irregular clouds and long filaments
(please refer back to figures 11, 12, 13, and 14). The clouds share the same characteristic widths of
~ 20-70 pc, or ~ 5-15 grid zones in the 256x256 resolution simulations. This is the same order of
magnitude as the standard atomic cloud size of ~ 10pc. However, higher resolution 2D simulations
still need to be performed to ensure that this result is independent of our resolution.

4. Summary

This study investigated effects of thermal evolution for shaping the density structure of spiral
density waves in the ISM. Cooling and heating of HI gas tend to produce a two phase structure. For
unmagnetized cases, thermal instability initially produces elongated filaments parallel to the shock
front. Magnetic fields restrain the geometry in which thermal instability develops in the dense
gas, and thereby cause structures such as sheared spurs to develop at early times. At late times,
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structure in models of all field strengths is similar, and consists of irregular clouds and filaments
which have their highest concentration in the arm.

We also examined the effects of heating and cooling on the azimuthally averaged surface
density profile of the spiral arm. The substructures caused by the thermal instability have the
effect of smoothing out the density profile, creating a final profile at late times which greatly
resembles observed spiral arm density profiles. Strong magnetic fields suppress much of the density
redistribution caused by the cooling of gas, and thus strongly magnetized profiles appear less
smoothed.

However preliminary, these results show great promise towards illuminating the complex gas
dynamics involved in spiral arm structure. With the addition of a cooling term, we have come close
to recreating the smooth density profiles that are actually observed for spiral galaxies. In addition,
we see several morphological characteristics, such as spur formation, which may play a role in the
ISM of real galaxies.

Future work will implement the new detailed cooling function to simulate a cloudy medium
without the approximations inherent in the cooling fit used here. Increased time and spatial
resolution will enable us to follow individual clouds more closely to resolve some of the details
of the cloud-arm interaction. Particularly, larger resolution simulations are needed to verify that
the qualitative conclusions made within this paper, such as those of characteristic cloud widths, are
not resolution dependent. More study is needed to understand how magnetic fields are restricting
the effects of cooling. Future work will also include a turbulent forcing term to break up large
clouds.
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Fig. 1.— Radial and tangential velocity as a function of arm distance in a M5l arm segment,

showing averaged CO intensity. Notice the smooth distribution of the shock profile which is unlike
the sharp profiles produced in isothermal numerical simulations. Picture courtesy of Shetty et al.
(2005).
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Fig. 2.— Contours of the detailed cooling function based directly on Wolfire et al. (1995, 2003).
Values are of constant £ in units of 1022ergem™3sec. Net cooling occurs when £ > 0 and is

indicated by dashed lines. Net heating occurs when £ < 0 (dotted lines). The solid line indicates
the equilibrium curve.
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Fig. 3.— Contours of the simplified cooling function based on Sdnchez-Salcedo et al. (2002). The
same contours are plotted as specified above.
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Table 1.

Dimensions ~ Time (orbits)  Ey B Cooled or Isothermal
1D 7 0.02 * iso
1D 7 0.03 * iso
1D 7 0.035 * iso
1D 7 0.04 * iso
1D 7 0.05 * iso
1D 7 0.03 * cool
1D 7 0.035 * cool
1D 7 0.04 * cool
1D 7 0.05 * cool
1D 7 0.035 100 cool
1D 7 0.03 10 cool
1D 7 0.035 10 cool
1D 7 0.04 10 cool
1D 7 0.056 10 cool
1D 7 0.03 2 cool
1D 7 0.035 2 cool
1D 7 0.04 2 cool
1D 7 0.05 2 cool
2D 6 0.035 * iso
2D 6 0.035 * cool
2D 6 0.035 100 cool
2D 6 0.035 10 cool
2D 6 0.035 1 cool




~16 —

Orbit 0.500000 Orbit 1.00000 Orbit 1.50000
5 T T T T 5 T T T T 5 T T T T
4F ] 4F E 4F E
sE E sF E sE E
o o o
N N N
~ ~ ~
W W W
2F E 2F E 2F E
| | | | | \//\/\ ]
0] I I I I 0] I I I I 0] I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
R—Ro [kpes] R—Ro [kpes] R—Ro [kpes]
Orbit 2.00000 Orbit 2.50000 Orbit 3.00000
5 T T T T 5 T T T T 5 T T T T
4F E 4F E 4F E
3F E 3F E 3F E
o o o
W W W
~ ~ ~
W W W
2F E 2F E 2F E
: 7 1 w E b E
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
R—Ro [kpes] R—Ro [kpes] R—Ro [kpes]
Orbit 3.50000 Orbit 4.00000 Orbit 4.50000
5 T T T T 5 T T T T 5 T T T T
4F ] 4F E 4F E
sE E sF E sE E
o o o
N N N
~ ~ ~
W W W
2F E 2F E 2F E
| J\_\ 7 | \J\ | + |
0] I I I I 0] I I I I 0] I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
R—Ro [kpes] R—Ro [kpes] R—Ro [kpes]
Orbit 5.00000 Orbit 5.50000 Orbit 6.00000
5 T T T T 5 T T T T 5 T T T T
4F E 4F E 4F E
3F E 3F E 3F E
o o o
W W W
~ ~ ~
W W W
2F E 2F E 2F E
£ p/\ 1 N 1 i 1
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
R—Ro [kpes] R—Ro [kpes] R—Ro [kpes]

Fig. 4— Results from an isothermal 2D simulation with &

= 0.035, showing the complex time

evolution of the gas surface density profile of a spiral arm for 6 orbits. Profiles are averaged in the

y direction.
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Fig. 5.— Results from an isothermal 1D simulation with ¢ = 0.02, showing the time evolution of

the arm profile for orbits 3 through 6.
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Fig. 6.— Results from an isothermal 1D simulation with ¢ = 0.03, showing the time evolution of
the arm profile for orbits 3 through 6.
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Fig. 7.— Results from an isothermal 1D simulation with ¢ = 0.035, showing the time evolution of

the arm profile for orbits 3 through 6.
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Fig. 8.— Results from an isothermal 2D simulation with ¢ = 0.035, showing the time evolution of

the arm profile for orbits 3 through 6.
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Fig. 9.— Results from an isothermal 1D simulation with ¢ = 0.04, showing the time evolution of

the arm profile for orbits 3 through 6.
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Fig. 10.— Results from an isothermal 1D simulation with ¢ = 0.05, showing the time evolution of
the arm profile for orbits 3 through 6.
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Fig. 11.— The detailed timescale evolution of a 2d model. This model has ¢ = 0.035 and no

magnetic fields.
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Fig. 12.— The detailed timescale evolution of a 2d model. This model has € = 0.035 with 5=100.
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Fig. 13.— The detailed timescale evolution of a 2d model. This model has € = 0.035 with 5=10.
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Fig. 14.— The detailed timescale evolution of a 2d model. This model has ¢ = 0.035 with f=1.
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Fig. 15.— Results from a 2D simulation with £ = 0.035 with no magnetic fields, showing the time
evolution of the cooled arm profile over the last three orbits. The solid line is smoothing over
typical observational accuracies of 150 pcs, while the dotted line is smoothing over 10 pcs.
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Fig. 16.— Same as Fig 15, but with ¢ = 0.035 and § = 100.
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Fig. 17.— Same as Fig 15, but with € = 0.035 and 8 = 10.
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Fig. 18.— Same as Fig 15,

but with ¢ = 0.035 and § = 1.
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Fig. 23.— Comparison of the time evolution of gas temperature in a sample simulation (¢ = 0.035,
B = 10). All the cases considered in this paper have the same general temperature evolution.



